Factorise : $2 y^{3}+y^{2}-2 y-1$
$2 y^{3}+y^{2}-2 y-1$
We have $p ( y )=2 y ^{3}+ y ^{2}-2 y -1$
By trial, we have $p(1) =2(1)^{3}+(1)^{2}-2(1)-1=2(1)+1-2-1 $
$=2+1-2-1=0 $
$\therefore$ By factor theorem, $( y -1)$ is a factor of $p ( y )$.
$\therefore \quad \frac{\left(2 y^{3}+y^{2}-2 y-1\right)}{(y-1)}=2 y^{2}+3 y+1$
$=(y-1)\left[2 y^{2}+2 y+y+1\right]$
[Splitting the middle term]
$=( y -1)[2 y ( y +1)+1( y +1)]$
$=( y -1)[( y +1)(2 y +1)]$
$=(y-1)(y+1)(2 y+1)$
Evaluate the following using suitable identities : $(998)^{3}$
Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$
Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.
Factorise of the following : $27 y^{3}+125 z^{3}$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$